
Proc.Rom.Acad.,Series B, 2005, 7, iss 2-3, p.85-91                                   PHYSICAL CHEMISTRY 
 
 
 

THE TANGENT PLANE INTERCEPT: A NEW METHOD IN PHASE 
EQUILIBRIUM CALCULATIONS 
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A new method for describing the equilibrium behaviour of multicomponent systems, based on an earlier approach originating from 
geometric programming, is proposed. The new emerging function, called by the authors the tangent plane intercept function, exhibits 
an array of interesting properties, proving itself as as a useful tool in some cases of non -trivial LLE calculations. 
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INTRODUCTION 

In an array of papers, Geană1-4 proposed a new 
approach in phase equilibrium calculations, based on 
the duality theorem, as stated in the theory of 
geometric programming. Although this approach is 
not widely used, due to technical problems in solving 
the primal problem associated with the minimum 
Gibbs free energy condition, the primal function 
proved useful by itself in describing a multiphase-
system at equilibrium. This work lays down some 
properties of this new function, reiterating and 
developping some observations made by the same 
author5,6,9

MATHEMATICAL PROPERTIES 

OBTAINING THE Y FUNCTION 

As stated before, the origins of the Y function reside 
in a new approach to the equilibrium problem, based 
on geometric programming. Starting with the 
classical condition for thermodynamic equilibrium: 
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where  is the mole number of component c in 

phase ϕ and is the chemical potential associated 
with component c in phase ϕ. For the chemical 
potential, a generic model can be used: 
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where  is the activity coefficient of component c 
in phase ϕ, and n  is the total amount of phase ϕ, in 
moles. 
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The classical problem stated above can be 
transformed in order to become compatible with the 
duality theorem from geometric programming (see 
e.g. Maruşciac, 1978): 
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c
For the above relation to be complete, a index set and 
a famili of constants  have to be specified.  i

The index set can be constructed as follows: 

Define the partial index sets Ij such as 
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Take the new index set as the reunion of these partial 
sets (non-overlapping, as it can be seen from their 
definitions): 
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The family of constants is defined such as: 
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With these definitions, problem (1) becomes the dual 
problem from geometric programming. The 
corresponding primal problem is obtained via the 
duality theorem, and is given by eq. (2) 
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Matrix a is defined as: 
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where 0N is the initial ammount vector: 
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and idC is the C×C identity matrix: 
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As eq. (2) shows, the C+F restrictions of the primal 
problem define a non-void acceptance region, making 
this problem super-consistent, so that the duality 
theorem can be applied. 

On the basis of this theorem, variables Z can be 
interpreted as activities a, phase-independent at 
equilibrium on the basis of the mass-transfer 
stationarity conditions. Indeed, according to the 
duality theorem, between the primal and dual solution 
the following relation exists: 
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where ui is a restriction term such as: 
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According o the definition of the index system t
{ }PjI j ,1= , the relation described by eq. (3) 

becomes: 
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thus, at equilibrium, Zc really is the activity of the 
component c. 

Based  on this treatment, a new function is 
introduced, given by: 
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which is the negative logarithm of the objective 
function in the primal problem  (2). Fraom the 
method used to construct it, one can observe that the 
Y function makes sense only for a system at 
equilibrium. On the other hand, the Y function has a 
geometric meaning, being the intercept of the tangent 
plane at point x to the Gibbs surface energy, on the 
line 0xx = , corresponding to the global 
composition. This interpreattion is illustrated in fig. 1. 

 

Figure 1. Geometric meaning of the Y function 

 

Computational properties7,8 

The Y function, as defined by eq. (4) can be rewritten 
as 
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where ac is the activity of the cth, phase-independent 
at equilibrium. 

Due to the normalisation condition: 
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equation (5) becomes: 
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Thus, the gradient of this function is: 
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where the partial derivatives are given by: 
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On the other hand, from the Gibbs-Duhem equation, 
we have: 
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This, in turn, is equivalent to the set of identities: 
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Differentiating again eq. (6) with respect to xk, eq. (7) 
can be obtained, after some algebric transformations: 
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According to its definition, the (i,j)th term of the 
hessian matrix associated wth the Gibbs function can 
be expressed as: 

( ) ( )

ji

am
C

C

k ji

am
C

ji

am
k

k

i

am
C

i

am
i

j

am
C

j

am
j

ij

am

ijG

xxxxxx
x

xxxx

xx
GH am

∂∂
μ∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
μ∂

−
∂∂
μ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
μ∂

−
∂
μ∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
μ∂

−
∂

μ∂
=

∂∂
Δ∂

=

∑
−

=

Δ

21

1

22

2

 

      (8) 

Combining eqns. (7) and (8), we obtain: 
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Combining eq. (8) with the formula obtained above 
for , the first important computational property 
of this function emerges: 

Y∇

( )xxHY
Gam −⊗−=∇

Δ
0    (9) 

where x0 and x are the initial (global), respectively 
actual, composition vectors, .  This 
property shows that, if x is a stationary point of the Y 
function corresponding to the initial composition x

x is not a spinodal point, 0≠
Δ GamH . In this case, 

the only solution of (9) is the trivial solution x=x0, 
that is, the only Y function having a stationary point 
in x is the one corresponding to the feed x0; 

x is a spinodal point, 0=
Δ GamH . In this case, there 

are infinetly many Y functions having a stationarity 
in x. 

This shows that, if x is a stationary point for at least 
two different Y functions (corresponding to two 
different feed compositions, x01 and x02), then this is a 
spinodal point for the system. 

Differentiaging relation (9) again with respect to the 
mole fraction, say, xk, adn making appropriate use of 
the Gibbs-Duhem equation and its consequences, as 
stated above, an expression for , the hessian 
matrix associated with Y, may be obtained as: 
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where A is a new matrix given by: 
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Analyzing eqns (9) and (10), it can be stated that 

Any stationary point of the Y function is either 
identical to the initial (global) composition, or lies on 
the spinodal curve 

At x0, the initioal (global) composition poine, matrix 
A vanishes element-wise, so the Y surface and the 
Gibbs energy surface have the same convexity. 

For a binary system, an third computational property 
can be obtained. Consider two initial points  and 

. Requesting that the corresponding Y functions be 
equal, the following equation is obtained: 
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(i.e. equation (9) reduces to a linear homogenous 
system in the unknown x0) then there are two 
possibilities: Equation (12) is invariant to any change in x0, so it 

can be stated that all the , so it can be stated that all 
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the Y functions corresponding to a feaseble global 
composition must pass through a number of fixed 
points. 

These computational properties, expressed by eqns 
(9)÷(11), may be used in describing the equilibrium 
state of a system, as illustrated below. 

Results and discussion 

Following are examples on using the Y function in 
liquid-liquid equilibrium calculations. The 
challenging aspect of this kind of calculations is the 
need for reliable initial approximations. Making 
appropriate use of the above stated properties of the 
Y function, such  reliable approximations may be 
found. Especially property (9) is of interest, because 
the spinodal and the binodal curves are relatively 
close in the constitutive space. 
Property (10) is used to assess the instability of a 
system, due to the well-known fact that at an unstable 
point, the Gibbs energy surface is non-convex. But, 
due to property (10), this is also the case with the Y 
function. 

Binay systems 

We start exploring the various possibilities in using 
the Y function with the example of a binary system 
(methanol+n-heptane, at 328 K and 1 bar; parameters 
taken from DECHEMA, 1980). First of all, figure 2 
illustrates property (11), showing that five functions 
of the Y class, corresponding to five different initial 
compositions, pass through the same points.  

 

Figure 2. Common intersection points for multiple 
Y functions. Methanol+n-hexane,   328 K and 1 bar. 

Next, figure 3 illustrates the use of the Y function in 
solving the liquid-liquid equilibrium problem. The 
initial point is labelled “I”, the spinodal points 
(stationarities of the Y functions) are labelled “S” and 
the equilibrium compositions are labelled “B”. The 
interesting aspect of this example is the position of 
the initial point: even initialized near the spinodal 
curve, the method still succeeds, enabling the 
Rachford-Rice equation to find a solution. In fact, due 
to property (9), the method will succeed even 
initialized on the spinodal curve, since this is a 
solution to the equation . It should be noted 
at this point that other, more general, methods, such 
as the homotopic or gradient line  approach (Sun and 
Seider

0=∇Y

10 Wasilkiewicz et. al.11 will fail in such a 
situation, because of the singularity of the hessian 
matrix associated with the Gibbs energy function. 

 

Figure 3. Using the Y function for equilibrium 
calculations for the system methanol+n-hexane, at 
328 K and 1 bar. 

Another interesting feature of the Y function is that 
any family of several (at least two) different Y 
functions can provide informations about the 
equilibrium behavior of the system over the whole 
composition range. This is illustrated in figures 4 and 
5, depicting, respectively,  the  at 300 K and 1 
bar and several Y curves at the same temperature and 
pressure, for the binary system n-buthyl-
acetate+water. Activities were calculated with the 
NRTL model. 

GΔam
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Figure 4:  Gibbs energy of mixing as a function of 
composition, for n-buthyl-acetate+water at 300 K and 
1 bar. 
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Figure 5: A family of Y curves for n-buthyl-
acetate+water at 300 K and 1 bar. 

As figure 4 shows, this system exhibits two 
miscibility gaps and, therefore, will have two 
spinodal curves. At a fixed temperature and pressure, 
these curves will generate four spinodal points, each 
of which, according to property (9), being a stationary 
point for an infinity of Y curves. By calculating a few 
of these curves ( four are shown in figure 5) we see 
that all of them share the four stationary points 
corresponding to spinodal compositions. Moreover, 
one of the four stationarities is also an intersection 
points for the curves. According to property (11), this 
means that the first derivative of the Gibbs energy of 
mixing vanishes at this point. In other words we must 

find here a multiple root of the first derivative (an 
inflection point with horizontal tangent), which is 
confirmed by figure 4. This shows that a family of Y 
curves is sufficient to fully describe the equilibrium 
behavior over the entire composition range, 
providing, at the same time, reliable initial guesses 
for accurate flash calculations. 

Ternary systems 

Before presenting any calculation concerning the 
ternary case, we introduce the following conjecture: 

All the stationarities of the Y function corresponding 
to the initial composition x0 lies on the same line, 
namely one of the eigendirections of the hessian 
matrix associated with the Gibbs energy function, that 
passes through x0. This eigendirection corresponds to 
the minimum eigenvalue of the hessian matrix, and 
represents a close approximation to the direction of 
the tie line passing through x0. 

Although this proposition is a conjecture, it proved 
very useful in calculating liquid-liquid equilibrium 
compositions, because it helps transforming the 
exploration of the feaseable domain from a two-
dimensional problem in a one-dimensional (far much 
easier) one. Based on this conjecture, the following 
algorithm may be outlined: 

Calculate the eigensystem of the hessian matrix 
associated with the Gibbs energy surface at x0. 

Take the eigenline corresponding to the minimal 
eigenvalue; solve the non-linear system 0=∇Y  
along this line. Based on the above conjecture, all 
stationarities of the  function are guaranteed to lie 
on this line. 

0xY

Starting with the stationary points found above (and, 
of course, different from x0)), solve the Rachford-Rice 
equation, thus finding the equilibrium compositions 
corresponding to the global state x0. 

Figures 6 and 7 show the progress of this algorithm 
for the sytem methanol+n-hexane+n-heptane, at 328 
K and 1 bar (parameters were taken from 
DECHEMA, 1980). In the case illustrated by figure 
6, the procere was started at an unstable point (inside 
the spinodal curve), so the eigenline of the hessian 
matrix exactly matches the tie line.  A contour plot of 
the Y surface and the profile of the Y function along 
the eigenline are used to show that a one-dimensional 
search is sufficient in order to find the stable solution.
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Figure 6. Geometry of the Y function surface and its profile along the proper eigenvalue of the HG matrix 
(methanol+n-nexane+n-heptane at 328 K and 1 atm) 

 
Figure 7  Geometry of the Y function near the critical 
point (methanol+n-hexane+n-heptane at 328 K and 1 
atm) 

Figure 7 illustrates a somewhat more challenging 
case, namely that of a initial composition close to the 
critical point. Since the initial point is again in the 
unstable region, the eigenline matches again the tie 
line. And again, a one dimensional search is enough 
to find the equilibrium compositions, even close to 
the critical point. 

Conclusions 

A new function (the Y function) is introduced, based 
on an original approach to the phase equilibrium 
problem, using geometric programming. The new 
introduced function has some general properties 
which makes it very useful in describing the 
equilibrium state in binary and ternary systems. 
Moreover, due to a conjecture introduced by the 
authors, the new function allows the equilibrium 
problem for ternary systems to be reduced to a one-
dimensional search, all stationary points of the Y 
function being guaranteed to lie on the same line. 
These points being fair approximations to the stable 
solution, the problem is basically reduced to a one-
dimensional search for the solutions to the non-linear 
system 0∇ =Y . The new solution procedure, based 
on this function, is illustrated with examples for the 
binary and ternary case. 
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