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 In a recent paper (Proc.Rom.Acad.,Series B,2003,1-2,p.3-10), a new equation of state was proposed, combining a hard-sphere 
reference model with a general inverse quadratic attractive term, used previously by the author, in a general cubic equation of 
state (GEOS). The procedure can be generalized for many reference hard-sphere or chain-hard-sphere forms proposed in 
literature. The main result was the good representation of PVT and phase behaviour of pure fluids. In this work, the equation is 
extended to mixtures using the Boublik-Mansoori scaled-particle theory and the one-fluid theory. Some examples of applications 
to vapor-liquid equilibria of binary mixtures are presented. 
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INTRODUCTION 

 
Equations of state are commonly used in 

thermodynamic and phase equilibrium calculations. 
For standard chemical engineering applications the 
most used equations of state are the simple cubic van 
der Waals forms. On the other hand much attention 
has been given to the development of semi-theoretical 
equations of state. For correlation and prediction of 
pressure-volume-temperature (PVT) and phase 
equilibria behaviour, a useful reference system is a 
hard-sphere model.  
 In a previous work1, a new equation of state was 
proposed by combining a hard-sphere reference 
model with a general inverse quadratic attractive 
term, previously used by the author2-6 in a general 
cubic equation of state (GEOS). Similarly to the 
GEOS, a parameterization based on four critical 
conditions is applied to the hard-sphere perturbed 
equation of state. The Carnahan-Starling equation of 
state for hard spheres was used together with a van 
der Waals hard-sphere term as a reference form. For 
pure fluids both vapor pressure and liquid density are 
accurately represented for an extensive range of 
temperature and a diversity of substances, by using a 
temperature dependence of the attractive term. The 

temperature function has three parameters (C1, C2, 
C3) estimated by matching points on the saturation 
curve (vapor pressure and the corresponding liquid 
volumes).  
 In this work, the equation of state1 is extended to 
mixtures using the Boublik-Mansoori scaled-particle 
theory7,8 and the one-fluid theory. Some examples of 
application to vapor-liquid equilibria of binary 
mixtures are presented. 

 
 

THE PERTURBED HARD-SPHERE 
EQUATION OF STATE 

 
In a recent paper the cubic equation of state has 

been generalized to the hard-sphere equation 
combined with a general inverse quadratic 
perturbation term (PHSGEOS):1 
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where Y is a short notation for any kind of hard-
sphere reference function Y(η), where / 4bη ρ= is the 
reduced density.  
The following notation is introduced:  
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by using the critical temperature and pressure (Tc, Pc). 
R is the universal gas constant, and , aΩ bΩ , cΩ , 

are nondimensional parameters. The function: dΩ
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y = 1 – rT  (7) 
 
with Tr - the reduced temperature by its critical value 
(T/Tc) and C1, C2, C3 - constants. 
Then the PHSGEOS equation (1) becomes: 
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In reduced variables the equation of state (8) takes the 
form: 
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with , , , and the 
critical compressibility factor 

/r cT T T= /r cP P P= /rV V V= c

c/c c cZ PV RT= . Vc is 
the critical molar volume. 

Taking into consideration the relative good 
representation of PVT and phase equilibrium 
behaviour achieved by the cubic equation of state, it 
is interesting to study the following equation of state:1
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The reference term is a combination of a hard sphere 
Carnahan-Starling expression with a van der Waals 
form: 
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The parameters c0 and f enable the transition between 
the limiting cases: c0 = 0 and f =1 (the cubic GEOS 
equation) and c0 = 1 and f = 0 (the CS + inverse 
quadratic equation). The results show that an 
appropriate combination is with the values c0 = 1 and 
f = 0.6. The new equation is: 
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A common method for extension the Carnahan-

Starling equation to a mixture of hard spheres is 
provided by the mixing rules based on the one-fluid 
theory. In this case, equation (12) is used with the 
parameter b in the reduced density η given by: 
 

∑∑
= =

=
N

i

N

j
ijji bXXb

1 1
 (13) 

 
where N is the number of components in the mixtures 
and X is the mole fraction. For the cross-parameter bij 
a suitable combining rule was used, e.g. an arithmetic 
mean or a cube-root combining rule.9
Another approach is that proposed independently by 
Boublik7 and Mansoori et al.,8 based on scaled-
particle and on Percus-Yevick theory. The following 
expression is obtained for the compressibility factor 
of mixtures of hard spheres: 
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where superscript BM denotes Boublik-Mansoori 
and: 
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where σ is the hard-sphere diameter. 
The reduced density, / 4bη ρ= , involves the 
covolume parameter of the mixture: 
 

2
3 Ab Nπ= F   (18) 

 
Considering the covolume parameter of the pure 
component: 
 

32
3i Ab N iπ σ=   (19) 

 
it results that a linear mixing rule is applied for the 
covolume parameter: 
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The equation of state for mixtures (called CSBM 
GEOS) is: 
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with f = 0.6.    
For the other parameters of the equation of state (21), 
similarly to the cubic equation of state (GEOS), the 
following one-fluid mixing rules were used:3,6
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A binary interaction parameter kij is introduced in the 
usual way, to correct for small deviations from the 
geometric mean combining rule, for the attractive 
force cross parameter: 
 

1/ 2( ) (1ij i j ija a a k=   (25) 
 
Also a geometric mean combining rule was used for 
the cross parameter cij: 
 

ij i jc c c= − − −  (26)

 
for both 0<ji c,c . It must be mentioned that for all 
studied pure substances the c parameter is negative. 
The parameter k12 was adjusted in a bubble pressure 
calculation to the experimental equilibrium pressure. 
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Fig. 1. Experimental10 and calculated vapor-liquid 
equilibria for the carbon dioxide + ethane system, at 

243.15 K. 
 
 
 
 
 

 



Dan Geană  12
 

RESULTS AND DISCUSSION 
 
 The equation of state (21) was applied to calculate 
the phase equilibria of several fluid mixtures. The 
parameter k12 was adjusted in a bubble pressure 
calculation to the experimental equilibrium pressure. 
Figure 1 shows calculated and experimental10 phase 
equilibria for the CO2 + ethane system at 243.15 K. 
The agreement between calculated and experimental 
phase diagrams is good for this azeotropic system.  
The phase diagram, calculated by the cubic equation 
of state (GEOS), is almost the same and was not 
displayed in the figure. For this system, which 
contains molecules of similar size, it appears to be no 
essential difference between the two reference 
systems. 
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Fig. 2. Experimental11 and calculated vapor-liquid    
equilibria for the ethane + n-butane system,  

at 323.15 K. 
 
Figure 2 shows calculated and experimental11 phase 
equilibria for the ethane + n-butane system at 323.15 
K. The agreement between calculated and 
experimental phase diagrams is also good for this 
system. The phase diagram, calculated by the cubic 
equation of state (GEOS), is almost the same and was 
not displayed in the figure. 
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Fig. 3. Experimental12 and calculated vapor-liquid 
equilibria for the carbon dioxide + n-heptane system, 

at 352.6 K. 
 
 
Figure 3 shows calculated and experimental12 phase 
equilibria for the CO2 + n-heptane system, at 352.6 K.  
A comparison is made with the phase diagram 
calculated by the cubic equation of state (GEOS). For 
this system containing molecules with a larger size 
difference, the cubic equation correlates better the 
liquid curve, but the new equation (21) with the 
Boublik-Mansoori term (14) reproduces correctly the 
vapor phase behavior. Both equations do poorly in the  
critical region, but in different ways. The cubic 
equation underpredicts the critical point of the 
mixture, whereas the the equation (32) leads to higher 
critical point pressure than that observed. 
Figure 4 shows calculated and experimental13 phase 
equilibria for the CH4 + n-heptane system, at 310.94 
K. Again the vapor phase behaviour is reproduced 
correctly by equation (21), but the errors are larger in 
the mixture critical region. 
Another example is given in the figure 5, which 
shows the calculated and experimental14 vapor-liquid 
equilibria, for the ethane + n-decane system at 410.94 
K. The new equation of state (21) correlates better the 
vapor-liquid equilibria for this highly asymmetric 
system. 
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Fig. 4. Experimental13 and calculated vapor-liquid 
equilibria for the methane + n-heptane system, at 

310.94 K. 
 
 
Figure 6 shows calculated and experimental15 phase 
equilibria for the nitrogen + n-pentane system, at 
310.7 K. In this case the new equation of state with 
the Boublik-Mansoori form (14) reproduces correctly 
the phase behavior of the mixture. 

The calculations presented here suggest that the 
cubic equation of state and the new equation of state 
(21) correlate similarly the phase behaviour of binary 
systems containing molecules of similar size. 
However, it appears that phase behaviour of binary 
mixtures with larger size differences can be better 
correlated with the new reference hard-sphere term 
equation of state. Surely, an extensive study is 
required in order to arrive to definite conclusions. 
The most important result is the possibility to 
compare the cubic equation of state and the noncubic 
form, i.e. the different reference hard sphere forms, 
having a common base of parameterization. 
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Fig. 5. Experimental14 and calculated vapor-liquid 
equilibria for the ethane + n-decane system, at  

410.94 K. 
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Fig. 6. Experimental15 and calculated vapor-liquid 
equilibria for the nitrogen + n-pentane system, at 

310.7 K. 
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CONCLUSIONS 
 
 The generalized equation of state,1 combining a 
hard-sphere reference model with a general inverse 
quadratic attractive term used previously by the 
author, in a cubic general equation of state has been 
extended to mixtures. Similarly to the cubic GEOS, a 
parameterization based on four critical conditions was 
applied to the hard-sphere perturbed equation of state. 
The Carnahan-Starling equation of state for hard 
spheres was used together with a van der Waals hard-
sphere term as a reference form. The extension of the 
equation to mixtures was done using the Boublik-
Mansoori scaled-particle theory for the hard sphere 
reference term and the one-fluid theory for the other 
parameters in the attractive term of the equation of 
state.  
 
 

APPENDIX 
 

The fugacity coefficient is calculated from the 
thermodynamic equation: 
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A  is the reduced molar residual Helmholtz energy 

/rA RT , ni is the number of moles of component and 
n is the total number of moles in the mixtures. The 
compresibility factor is given by equation (21). The 
corresponding expression for  is: A
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The derivative from (A1) is: 
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The differential operator ( / )

j ii XD DX
≠

is used to 

indicate differentiation with respect to Xi where all 
other Xj  are held constant. 
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