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A new equation of state is proposed by combining a hard-sphere reference model with a general inverse quadratic attractive 
term, used previously by the author, in a general cubic equation of state (GEOS). Similarly to the cubic GEOS, a parameterization 
based on four critical conditions is applied to the hard-sphere perturbed equation of state (PHSGEOS). Moreover, the procedure 
can be generalized for many reference hard-sphere or chain-hard-sphere forms proposed in literature. To exemplify, the 
Carnahan-Starling equation of state for hard spheres is used together with a van der Waals hard-sphere term as a reference form. 
The main result is the good representation of PVT and phase behavior of fluids. For pure fluids both vapor pressure and liquid 
density are accurately represented for an extensive range of temperature and a diversity of substances, by using a temperature 
dependence of the attractive term. The temperature function has three parameters (C1, C2, C3) estimated by matching points on the 
saturation curve (vapor pressure and the corresponding liquid volumes). The equation can be extended to mixtures using the 
Boublik-Mansoori scaled-particle theory and the one-fluid theory. 
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INTRODUCTION 

 
Equations of state models are commonly used in 

thermodynamic and phase equilibrium calculations. 
For standard chemical engineering applications, the 
most used equations of state are the simple cubic van 
der Waals forms. On the other hand much attention 
has been given toward development of semi-
theoretical equations of state. For correlation and 
prediction of pressure-volume-temperature (PVT) and 
phase equilibria behavior, a useful reference system is 
a hard-sphere model. Many attempts are presented in 
the literature to add corrections, called perturbations, 
to the reference system. The simplest result is the 
perturbation of a hard-sphere term with a van der 
Waals attraction term, as suggested by Carnahan and 
Starling.1 They used also the perturbation term of 
Redlich and Kwong. It was shown by Wong and 
Prausnitz2 that both equations lead to poor liquid 
densities. Different perturbation terms, more or less 
complex, were proposed in the literature after 1972, 
some of them being reviewed by Dohrn and 
Prausnitz.3 They studied several simple perturbation 

terms on Carnahan-Starling hard-sphere equation and 
proposed a new simple perturbation term. Seven two-
parameter equations of state were applied for 11 non-
polar pure fluids, and compared with the equation 
proposed by the authors. Their equation of state 
represents liquid densities significantly better, but it is 
not superior to other equations for vapor pressures. 

Later, Aly and Ashour4 reinvestigated the equation 
of state with a van der Waals perturbation term, 
corrected with a temperature function. The equation 
gives good vapor pressures but poor densities, 
especially at low temperatures and high pressures in 
the liquid region. 

For polar compounds, the Carnahan-Starling hard-
sphere equation was modified by Bryan and 
Prausnitz.5 

Recently, Yelash et al.6,7 proposed two new simple 
hard-sphere reference equations which, in 
combination with a van der Waals attraction term, 
lead to a biquadratic, respectively a cubic equation of 
state. The new equations, having poles close to the 
physical packing fraction of hard spheres, were 
studied for their global phase behavior and predicted 
closed-loop liquid-liquid immiscibility. 
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More complicated equations of state have been 
proposed and applied to real systems using the 
statistical association fluid theory (SAFT) by Huang 
and Radosz,8,9 Fu and Sandler,10 or the perturbed 
hard-sphere-chain (PHSC) theory by Song et al.,11 
and Hino and Prausnitz.12 

In previous works, the van der Waals reference term 
was combined with a general inverse quadratic 
perturbation term leading to a general cubic equation 
of state, called GEOS.16 Using the reduced density, η, 
the last version GEOS3C19 takes the form: 
 

The Carnahan-Starling equation of state for hard 
spheres was extended to mixtures using either a one-
fluid mixing rules, or the generalization of scaled-
particle (called also Percus-Yevick) theory proposed 
by Bublik13 and Mansoori et al.14 Equations of state 
using the two reference systems, combined with a 
perturbation term of the van der Waals form, were 
used by Dimitrelis and Prausnitz15 to correlate the 
phase behavior of binary mixtures of nonpolar 
molecules differing significantly in size. 
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with the reduced density 
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The equation has four parameters (a, b, c, d), and the 
function of temperature is: 

 In this work, a new equation of state is proposed 
by combining a hard-sphere reference model with a 
general inverse quadratic attractive term, used 
previously by the author16-18 in a general cubic 
equation of state (GEOS). Similarly to the GEOS, a 
parameterization based on four critical conditions is 
applied to the hard-sphere perturbed equation of state. 
Moreover, the procedure can be generalized for many 
reference hard-sphere or chain-hard-sphere forms 
proposed in literature. To exemplify, the Carnahan-
Starling equation of state for hard spheres is used 
together with a van der Waals hard-sphere term as a 
reference form. The main result is a good 
representation of pressure-volume-temperature (PVT) 
properties and phase behavior of fluids. For pure 
fluids both vapor pressure and liquid density are 
accurately represented for an extensive range of 
temperature and a diversity of substances, by using a 
temperature dependence of the attractive term. The 
temperature function has three parameters (C1, C2, 
C3) estimated by matching points on the saturation 
curve (vapor pressure and the corresponding liquid 
volumes). The equation can be extended to mixtures 
using the Boublik-Mansoori scaled-particle theory13,14 
and the one-fluid theory. 
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and 
 

2
1 2 3( ) 1rT C y C y Cβ = + + +   for Tr ≤ 1 (5) 

 
1( ) 1rT Cβ = +     for Tr > 1 (6) 

 
y = 1 – rT  (7) 
 
with Tr - the reduced temperature by its critical value 
(T/Tc) and C1, C2, C3 - constants. 
This equation of state was applied to pure 
substances19 as well as to mixtures.20,21 
For many purposes, the van der Waals reference term 
is satisfactory, and because of its algebraic simplicity 
it is used extensively. From a theoretical point of 
view, more appropriate is a reference term based on 
the equation for hard spheres. 
Then the cubic form (2) can be generalized to the 
hard-sphere equation combined with the same general 
inverse quadratic perturbation term (PHSGEOS):  

  
THE PERTURBED HARD-SPHERE 

EQUATION OF STATE 
2 2

2
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Following van der Waals, it is usual to represent 
the compressibility factor Z by the contributions of a 
reference term and a perturbation term: 

 

 
Z = Zref + Zpert (1) 

where Y is a short notation for any kind of hard-
sphere reference function Y(η). For the van der Waals 
repulsive term: 
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critical compressibility factor 
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cZ PV= RT . Vc is 
the critical molar volume.  

Much attention has received the Carnahan-Starling 
(CS) expression:1 

Imposing four critical conditions to the equation (15) 
(see appendix), it results: 
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and the following expressions for the parameters: which, for preserving the cubic form of the equation 

of state, was simplified to  
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 with m=n=0.5 by Scott, m=0.77, n=0.42 by Kim et 

al., and m=0.62, n=0.47 by Mohsen-Nia et al.22 

 (18) Other expressions appeared in the literature and may 
be also used, as for example that proposed by Bryan 
and Prausnitz5 for polar fluids. 

The notations in the above expressions are: 
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η= + )  (19) A hard-sphere-chain expression, as that used by 
Huang and Radosz8 in the SAFT equation of state, 
may be considered too.  
Coming back to the PHSGEOS equation (8), the 
following notations can be introduced:  ' 2 ''1 (2 4 )c c c c c
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where the notations Yc, ,  are used for the 
function Y, and their first and second derivatives at 
the critical point. The η

'
cY "

cY

c is the value of the reduced 
density at the critical point, obtained as the solution 
of the equation Yc = Zc /B. 

 
by using the critical temperature and pressure (Tc, Pc). 
R is the universal gas constant, and , aΩ bΩ , cΩ , 

are nondimensional parameters. dΩ The calculation of the parameters is made as follows: 
• Given (adjusting) cα  and C1; Then the PHSGEOS equation (8) becomes: 

 • Calculation of B and Zc /B; 
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 (14) • Solving for ηc from the equation Yc=Zc /B; 
• Calculation of Y , Y  and u, w, h from (19-21); '

c
''

c

• Calculation of aΩ , , ,  from (17, 18). bΩ cΩ dΩ
 
In reduced variables the equation of state (14) takes 
the form: 
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The procedure is general, this means that every 
suitable expression for the hard sphere reference 
term, Y, may be used for applications. Moreover, in 
the general inverse quadratic attractive term, special 
cases can be easily obtained, by setting restrictions on 
the parameters (as in the cubic GEOS18,19). For 
example, the van der Waals attractive term results by 
setting: 
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 is considered for equation (25) 
In both cases the potential field is given by: cΩ  =  = 0 (22) dΩ
  

( ) lnr

A

a T V d c
N c V d c

Φ − + −
=

− − − −
 (28) The Redlich-Kwong attractive term is obtained by 

setting: 
  

cΩ  = – ( /2)bΩ 2  = – ( /2) (23) dΩ bΩ where the molar volume V = NAv/N, NA is the 
Avogadro's number, and a, c, d are energy and size 
parameters, and c < 0. 

 
The Peng-Robinson attractive term is obtained by 
setting: 
 

cΩ  = – 2   = –  (24) 2
bΩ dΩ bΩ

The equations of state are obtained using the 
statistical thermodynamic relationship between the 
compressibility factor and the canonical partition 
function.  
 This explains the meaning of the "general inverse 

quadratic" term. The implications of such settings, in 
relation with many other attractive terms proposed in 
literature, were discussed on the basis of a 
generalized diagram21 using the coordinates cΩ / 2

bΩ  
and / . dΩ bΩ

 
NEW PERTURBED HARD-SPHERE 

EQUATION OF STATE 
 

Taking into consideration the relative good 
representation of PVT and phase equilibrium behavior 
achived by the cubic equation of state, it is interesting 
to study the transition between the limiting cases 
discussed in the above paragraph. The following 
equation of state is proposed:23 

As it was mentioned before, many expressions 
suggested in the literature for the reference hard 
sphere term can be used to obtain a special equation 
of state. In this work we present an example of the 
application of a simple type of perturbed hard sphere 
equation of state, following the general described 
procedure. At first, the most simple equation of state 
may be obtained by combining the Carnahan-Starling 
expression with the general inverse quadratic 
perturbation term, used previously in the GEOS 
forms: 
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 (25) The reference term is a combination of a hard sphere 
Carnahan-Starling expression (10) with a van der 
Waals form: 
  

with ZCS given by equation (10). 2
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ηη
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 (30) Equations of state, in the general form (8), may be 
derived from the canonical van der Waals partition 
function.23  

For the free volume term, a van der Waals hard 
sphere expression  
 

1 4fv
v

η= −  (26) 

 
leads to equation (2). The expression of hard spheres: 
 

2
(3 4)exp
(1 )
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v

η η
η

 −
=  − 

  (27) 

The parameters c0 and f enable the transition between 
the limiting cases: c0 = 0 and f =1 (the cubic GEOS 
equation) and c0 = 1 and f = 0 (the CS + inverse 
quadratic equation). Formally, the van der Waals term 
in equation (29) can be included in the attractiv part 
of the equation of state. But for the algebra of the 
equation and applications the coupling of the two 
terms in equation (30) leads to simpler expressions. 
The first and second derivative of the Y function (30) 
are given in appendix. 
Different combinations of hard-sphere and van der 
Waals terms were tested, by using particular values 
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for c0  and f in equation (30). The results show that an 
appropiate combination is with the values c0 = 1 and f 
= 0.6. The new equation is: 
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        –
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 (31) 

 
This empirical choice is reasonable, conserving the 
correct theoretical hard-sphere reference term. The 
corrective term of van der Waals type is needed by 
two reasons suggested in the literature: to change the 
pole of the equations of state (as discussed by Yelash 
and Kraska6), and/or to complicate the attractiv term 
(as discussed by Dohrn and Prausnitz3). The recent 
papers of Polishuk et al.27 investigating the global 
phase diagrams of hard-sphere and cubic equations of 
state confirm also the need of such kind of transition. 
Surely, other approaches may be imaginated. 
 

RESULTS AND DISCUSSION 
 

In the following part we present the results 
obtained by applying the new equation of state (31) to 
represent PVT and phase behavior of pure fluids. 

Using experimental values of the critical constants 
(Tc, Pc, Zc) and the acentric factor for the calculation 
of Riedel parameter (αc) from the equation: 
 

5.808 4.93cα ω= +  (32) 
 
the C1, C2, C3 were obtained by matching points on 
the saturation curve (vapor pressures together with 
the corresponding saturated-liquid molar volumes). 
Thus, the EOS is forced to properly reproduce the 
saturation region from the triple point to the critical 
point. In many cases three fixed temperatures, the 
triple point, the boiling point and the reduced 
temperature Tr = 0.7, can be used as a minimum 
available data for obtaining the parameters values. 
The values of the C1, C2, C3 parameters for the 
equation (31), for several substances are presented in 
Table 1. Table 2 gives the average absolute deviations 
(AAD) for vapor pressure, saturated-liquid volume 
and vapor volume, between calculated values by 
equation (31) and experimental data (when available, 
IUPAC recommended data). The data used in the 
calculations are collected in a database, called 
LVV1DAT.21 The corresponding tables of the 

parameters values and average absolute deviations for 
the cubic GEOS are reported elsewhere21. 
 
Table 1. The C1, C2, C3 parameters of equation of 
state (31). 
Component C1 C2 C3 αc 
NH3 –0.0165 0.9498 –0.3987 7.0695
Ar –0.0915 0.2661 0.7197 5.7869
CO2 0.0479 0.2923 3.5754 6.9173
He –0.4952 0.0920 –0.1689 3.9008
H2O 0.0311 1.0544 –0.7619 7.5027
H2 –0.2923 0.2007 –0.2179 4.7272
CH4 –0.0774 0.3312 0.2997 5.8573
C2H6 0.0272 0.3813 0.1431 6.2909
C3H8 0.0432 0.5159 0.0734 6.5549
i-C4H10 0.0792 0.3727 1.0314 6.7195
n-C4H10 0.0222 0.6493 0.8173 6.7906
i-C5H12 0.0161 0.8828 0.2820 6.9145
n-C5H12 0.0391 0.8373 0.5373 7.0484
n-C6H14 0.0938 0.8575 –0.0043 7.2822
n-C7H16 0.0745 1.2357 –0.3078 7.5384
n-C8H18 0.1090 1.4298 –1.4201 7.7504
CH3Cl –0.0519 0.7843 0.8471 6.5771
F2 –0.0167 0.3513 0.1759 6.0526
N2O –0.0524 0.5031 4.1690 6.5968
SO2 0.0248 0.8544 1.0558 7.0454
H2S –0.0554 0.4466 2.0550 6.3010
C2H4 –0.0046 0.4009 0.2576 6.2363
C3H6 –0.0460 0.7722 0.9647 6.5376
C6H6 0.0397 0.6429 0.3826 6.8270
cyclo-C3H6 0.0576 –1.8387 13.491 7.1095
Ne –0.0549 –0.2088 1.5980 5.8080
N2 –0.0471 0.3263 0.4863 5.9805
O2 –0.0502 0.3585 0.1189 5.9174
CO 0.0074 0.1162 1.0489 6.0355
CH3OH 0.0525 2.4073 –3.6874 8.5528
C2H5Cl 0.0017 0.6357 0.6370 6.7523
CCl4 0.0095 0.6876 0.6189 6.7640
Cl2 –0.0816 0.5041 0.7495 6.1679
HCl –0.0574 0.6462 0.0309 6.4361
SO3 0.1396 0.3981 5.4876 7.9367
 
 
Using the same parameter values, the densities 
(volumes) of the pure fluids were predicted in the 
single-phase region, on several isotherms. The 
absolute average deviations in volumes on the 
isotherms, in the single-phase region are reported also 
in the table 2 (AAD 1PV). 
Examples of such calculations are presented in Figs. 1 
– 3. Fig. 1 shows the isotherms of argon. Points figure 
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IUPAC data,25 while the curves represent predictions 
performed by the equation of sate (31). 
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P/
P c
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85 K

120 K

150.86 K

200 K

400 K

600 K800 K

1100 K

Fig. 1. Argon isotherms. Comparison between 
calculations with the equation of state (31) and 

IUPAC recommended data.25 

 
Table 2. PVT Average Absolute Deviations of 
equation of state (31). 
Component %AAD 

Ps 
%AAD 

Vl 
%AAD 

Vv 
%AAD

1PV 
NH3 0.76 6.68 2.86 5.04 
Ar 0.26 2.91 1.45 1.52 
CO2 0.34 2.55 2.01 1.43 
He 0.18 0.31 1.56 8.54 
H2O 0.76 6.07 2.07 3.10 
H2 0.12 1.66 1.07 2.90 
CH4 0.46 3.54 1.22 3.09 
C2H6 1.13 5.15 1.69 3.36 
C3H8 1.09 5.57 1.75 3.90 
i-C4H10 0.36 2.56 1.62 3.07 
n-C4H10 0.35 3.05 1.49 3.74 
i-C5H12 0.19 2.83 2.64 2.92 
n-C5H12 0.26 3.28 1.54 4.48 
n-C6H14 0.41 4.73 1.56 3.86 
n-C7H16 0.29 3.39 1.94 7.45 
n-C8H18 0.29 3.86 1.97 5.21 
CH3Cl 0.35 2.42 2.50 3.48 
F2 0.93 4.55 1.59 2.71 
N2O 0.22 1.69 2.72 3.82 
SO2 0.33 2.93 0.90 4.01 
H2S 0.32 2.06 1.88 2.90 
C2H4 1.06 5.23 2.12 3.86 
C3H6 0.37 1.66 2.65 3.68 
C6H6 0.77 4.70 5.23 4.47 
cyclo-C3H6 1.04 2.41 2.55 2.97 
Ne 0.69 2.17 1.58 1.32 
N2 0.47 3.59 1.74 3.75 
O2 0.97 4.14 2.07 2.84 
CO 0.69 3.20 2.76 1.66 
CH3OH 0.64 6.68 4.01 - 
C2H5Cl 0.55 3.47 3.74 - 
CCl4 0.23 3.37 2.30 - 
Cl2 0.41 3.22 5.13 - 
HCl 0.20 4.79 4.59 - 
SO3 0.97 3.61 6.07 - 
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300 K
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1100 K

Fig. 2. Nitrogen isotherms. Comparison between 
calculations with the equation of state (31) and 

IUPAC recommended data.24 
 
A similar plot is presented in Fig. 2 for N2. The 
agreement with IUPAC data24 is acceptable at 
reduced pressures (under 100) but larger errors of 
calculations should be, however, counted in the high-
pressure range (P/Pc > 100). 

 
 
 
The agreement with IUPAC data is very good at high 
temperatures (200 – 1100 K) and reasonable good at 
the critical temperature (150.86 K). At subcritical 
temperatures (85, 120 K), larger errors of calculations 
were observed, but still acceptable (average absolute 
deviations on isotherms 1.52%, table 2). 

A similar behavior is observed for CH4, as shown in 
Fig. 3. The agreement with IUPAC data26 is 
reasonable at pressures under 1000 bar. 
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APENDIX 
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Setting four critical conditions at Tr =1 and Vr = 1 in 
the equation (15): 
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the following system of equations is obtained: 
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Fig. 3. Methane isotherms. Comparison between 
calculations with the equation of state (31) and 

IUPAC recommended data.26 
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 (A5) CONCLUSIONS 

   A generalized equation of state is proposed by 
combining a hard-sphere reference model with a 
general inverse quadratic attractive term (PHSGEOS) 
used previously by the author, in a cubic general 
equation of state (GEOS). Similarly to the cubic 
GEOS, a parameterization based on four critical 
conditions is applied to the hard-sphere perturbed 
equation of state. The procedure can be generalized 
for many reference hard-sphere or chain-hard-sphere 
forms proposed in literature. To exemplify, the 
Carnahan-Starling equation of state for hard spheres 
is used together with a van der Waals hard-sphere 
term as a reference form. The main result is a good 
representation of PVT properties and phase behavior 
of fluids. For pure fluids both vapor pressure and 
liquid density are accurately represented for an 
extensive range of temperature and a diversity of 
substances, by using a temperature dependence of the 
attractive term. The temperature function has three 
parameters (C1, C2, C3) estimated by matching points 
on the saturation curve (vapor pressure and the 
corresponding liquid volumes). The equation can be 
extended to mixtures using the Boublik-Mansoori 
scaled-particle theory for the hard sphere reference 
term and the one-fluid theory for the other parameters 
in the attractive term of the equation of state. 

with  
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By combining of (A2) with (A5) it results: 
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The notation B for the above expression is the same 
used in the cubic general form (GEOS), in the 
previous papers.16-21 
The corresponding expressions of the derivatives for 
the new equation of state (29) are: 
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